Part Number Hot Search : 
JHD164A 121002 TDA3606A LF05A08 1H472J FAN3223 PD001 B550B
Product Description
Full Text Search
 

To Download IRFR7746PBF-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  strong ir fet? irfr7746pbf irfu7746pbf hexfet ? power mosfet d s g application ? ? brushed motor drive applications ? ? bldc motor drive applications ?? battery powered circuits ? ? half-bridge and full-bridge topologies ? ? synchronous rectifier applications ? ? resonant mode power supplies ? ? or-ing and redundant power switches ? ? dc/dc and ac/dc converters ? ? dc/ac inverters benefits ? ? improved gate, avalanche and dynamic dv/dt ruggedness ? ? fully characterized capacitance and avalanche soa ? ? enhanced body diode dv/dt and di/dt capability ? ? lead-free, rohs compliant v dss 75v r ds(on) typ. 9.5m ?? max 11.2m ?? i d (silicon limited) 59a ? i d (package limited) 56a ? fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature d-pak irfr7746pbf i-pak irfu7746pbf g d s gate drain source d g s d g s base part number package type standard pack form quantity irfr7746pbf d-pak tube 75 irfr7746pbf tape and reel 2000 irfr7746trpbf irfu7746pbf i-pak tube 75 irfu7746pbf orderable part number 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 5 10 15 20 25 30 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 35a t j = 25c t j = 125c 1 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package
? irfr/u7746pbf absolute maximum rating symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 59 ? a ? i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) 42 i dm pulsed drain current ?? 230* p d @t c = 25c maximum power dissipation 99 w linear derating factor 0.66 w/c v gs gate-to-source voltage 20 v t j t stg operating junction and storage temperature range -55 to + 175 ? c ? soldering temperature, for 10 seconds (1.6mm from case) 300 avalanche characteristics ? e as (thermally limited) single pulse avalanche energy ?? 116 mj e as (thermally limited) single pulse avalanche energy ?? 160 i ar avalanche current ? see fig 15, 16, 23a, 23b a e ar repetitive avalanche energy ? mj thermal resistance ? symbol parameter typ. max. units r ? jc junction-to-case ?? ??? 1.52 c/w ? r ? ja junction-to-ambient (pcb mount) ? ??? 50 r ? ja junction-to-ambient ? ??? 110 i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) 56 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 75 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 53 ??? mv/c reference to 25c, i d = 1ma ? r ds(on) static drain-to-source on-resistance ??? 9.5 11.2 v gs = 10v, i d = 35a ? ??? 11.2 ??? v gs = 6.0v, i d = 18a ? v gs(th) gate threshold voltage 2.1 ??? 3.7 v v ds = v gs , i d = 100a i dss drain-to-source leakage current ??? ??? 1.0 a v ds =75 v, v gs = 0v ??? ??? 150 v ds =75v,v gs = 0v,t j =125c i gss gate-to-source forward leakage ??? ??? 100 na v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v r g gate resistance ??? 1.6 ??? ?? m ??? notes: ?? calculated continuous current based on maximum allowable j unction temperature. bond wire current limit is 56a by source bonding technology. note that current limitatio ns arising from heating of the device leads may occur with some lead mounting arrangements. (refer to an-1140) ? ? repetitive rating; pulse width limited by max. junction temperature. ? limited by t jmax , starting t j = 25c, l = 190 h, r g = 50 ? , i as = 35a, v gs =10v. ?? i sd ? 35a, di/dt ? 570a/s, v dd ? v (br)dss , t j ?? 175c. ?? pulse width ? 400s; duty cycle ? 2%. ? c oss eff. (tr) is a fixed capacitance that gives the same c harging time as c oss while v ds is rising from 0 to 80% v dss . ? c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . ? r ? is measured at t j approximately 90c. ?? when mounted on 1" square pcb (fr-4 or g-10 material). fo r recommended footprint and soldering techniques refer to application note #an-994.please refer to application note to an-994 : http://www.irf.com/technical-info/appnotes/an-994.pdf ? limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 ? , i as = 18a, v gs =10v * pulse drain current is limited at 224a by source bonding technology. 2 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions gfs forward transconductance 112 ??? ??? s v ds = 10v, i d =35a q g total gate charge ??? 59 89 i d = 35a q gs gate-to-source charge ??? 14 ??? v ds = 38v q gd gate-to-drain charge ??? 18 ??? v gs = 10v q sync total gate charge sync. (qg? qgd) ??? 41 ??? t d(on) turn-on delay time ??? 7.9 ??? ns v dd = 38v t r rise time ??? 30 ??? i d = 35a t d(off) turn-off delay time ??? 34 ??? r g = 2.7 ?? t f fall time ??? 21 ??? v gs = 10v ? c iss input capacitance ??? 3107 ??? pf ? v gs = 0v c oss output capacitance ??? 257 ??? v ds = 25v c rss reverse transfer capacitance ??? 159 ??? ? = 1.0mhz, see fig.7 c oss eff.(er) effective output capacitance (energy related) ??? 234 ??? v gs = 0v, vds = 0v to 60v ? c oss eff.(tr) output capacitance (time related) ??? 299 ??? v gs = 0v, vds = 0v to 60v ? diode characteristics ? symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 59 ? a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 230* integral reverse (body diode) ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.2 v t j = 25c,i s = 35a,v gs = 0v ?? dv/dt peak diode recovery dv/dt ?? ??? 8.1 ??? v/ns t j = 175c,i s = 35a,v ds = 75v t rr reverse recovery time ??? 27 ??? ns t j = 25c v dd = 64v ??? 32 ??? t j = 125c i f = 35a, q rr reverse recovery charge ??? 26 ??? nc t j = 25c di/dt = 100a/s ??? ??? 36 ??? t j = 125c ? i rrm reverse recovery current ??? 1.7 ??? a t j = 25c ? nc ? d s g 3 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 3. typical output characteristics fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v ? 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v ? 60s pulse width fig 5. typical transfer characteristics -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 35a v gs = 10v 0 1020304050607080 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v v ds = 38v vds= 15v i d = 35a 4 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 fig 8. typical gate charge vs. gate-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss
? irfr/u7746pbf fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 13. typical on-resista nce vs. drain current fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -20 20 60 100 140 180 t j , temperature ( c ) 76 78 80 82 84 86 88 90 92 94 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 50 100 150 200 i d , drain current (a) 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) vgs = 5.5v vgs = 6.0v vgs = 7.0v vgs = 8.0v vgs = 10v 0 1020304050607080 v ds, drain-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 e n e r g y ( j ) 0.1 1 10 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc limited by package 5 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf fig 14. maximum effective transient thermal impedance, junction-to-case fig 16. maximum avalanche energy vs. temperature fig 15. avalanche current vs. pulse width notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1.avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = tav f z thjc (d, t av ) = transient thermal resistance, see figures 13) pd (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av ?? 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r ma l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 35a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 6 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf fig 17. threshold voltage vs. temperature fig 21. typical stored charge vs. dif/dt -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 100a id = 250a id = 1.0ma id = 10ma id = 1.0a 0 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 2 4 6 8 10 12 14 i r r m ( a ) i f = 24a v r = 64v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 2 4 6 8 10 12 14 i r r m ( a ) i f = 35a v r = 64v t j = 25c t j = 125c fig 19. typical recovery current vs. dif/dt 0 200 400 600 800 1000 di f /dt (a/s) 20 40 60 80 100 120 140 160 180 200 q r r ( n c ) i f = 24a v r = 64v t j = 25c t j = 125c fig 18. typical recovery current vs. dif/dt fig 20. typical stored charge vs. dif/dt 0 200 400 600 800 1000 di f /dt (a/s) 20 40 60 80 100 120 140 160 180 200 q r r ( n c ) i f = 35a v r = 64v t j = 25c t j = 125c 7 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf fig 22. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 23a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 24a. switching time test circuit fig 25a. gate charge test circuit t p v (br)dss i as fig 23b. unclamped inductive waveforms fig 24b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 25b. gate charge waveform vdd ? 8 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf note: for the most current drawing please refer to ir website at http://www.irf.com/package/ d-pak (to-252aa) package outline dimensio ns are shown in millimeters (inches) d-pak (to-252aa) part marking information international assembled on ww 16, 2001 in the assembly line "a" or note: "p" in assembly line position example: lot code 1234 this is an irfr120 with assembly indicates "lead-free" product (optional) p = designates lead-free a = assembly site code part number week 16 date code year 1 = 2001 rectifier international logo lot code assembly 3412 irfr120 116a line a 34 rectifier logo irfr120 12 assembly lot code year 1 = 2001 date code part number week 16 "p" in assembly line position indicates "lead-free" qualification to the consumer-level p = designates lead-free product qualified to the consumer level (optional) 9 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf i-pak (to-251aa) package outline dimens ions are shown in millimeters (inches) i-pak (to-251aa) part marking information note: for the most current drawing please refer to ir website at http://www.irf.com/package/ 78 line a logo international rectifier or product (optional) p = designates lead-free a = assembly site code irfu120 part number week 19 date code year 1 = 2001 rectifier international logo assembly lot code irfu120 56 date code part number lot code assembly 56 78 year 1 = 2001 week 19 119a indicates lead-free" assembled on ww 19, 2001 in the assembly line "a" note: "p" in assembly line position example: with assembly this is an irfu120 lot code 5678 10 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf note: for the most current drawing please refer to ir website at http://www.irf.com/package/ tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch d-pak (to-252aa) tape & reel information di mensions are shown in millimeters (inches) 11 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
? irfr/u7746pbf ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ ? qualification standards can be found at international rectifier?s web site: h ttp://www.irf.com/product-info/reliability/ ?? applicable version of jedec standar d at the time of product release. qualification information ? ? qualification level ? industrial (per jedec jesd47f) ?? moisture sensitivity level d-pak i-pak rohs compliant yes msl1 revision history date comments 11/7/2014 ?? updated e as (l =1mh) = 160mj on page 2 ?? updated note 10 ?limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 ? , i as = 18a, v gs =10v? on page 2 12 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014


▲Up To Search▲   

 
Price & Availability of IRFR7746PBF-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X